博客
关于我
数理统计13:非正态总体的区间估计,极限分布
阅读量:433 次
发布时间:2019-03-06

本文共 1858 字,大约阅读时间需要 6 分钟。

指数分布与均匀分布的区间估计

在前一篇文章中,我们讨论了枢轴量法,并通过它对正态分布参数进行了区间估计。然而,正态分布的点估计具有独特的性质,使得其区间估计相对容易。接下来,我们将探讨其他分布的区间估计方法。


指数分布的区间估计

指数分布 (E(\lambda)) 的参数 (\lambda) 的区间估计是一个常见问题。由于 (\bar{X}) 是 (1/\lambda) 的无偏无偏估计量,因此 (\lambda) 的区间估计需要通过 (\bar{X}) 或其与 (\chi^2) 分布的关系来构造。

对于指数分布,样本和 (\Gamma(n, \lambda)) 服从,于是 (2\lambda T) 服从 (\chi^2(2n)) 分布。因此,枢轴量 (2\lambda T) 的观测值可以通过等尾区间来确定:

[2\lambda T \in [\chi^2_{1-\alpha/2}(2n), \chi^2_{\alpha/2}(2n)]]

因此,(\lambda) 的 (1-\alpha) 置信区间为:

[\left[\frac{\chi^2_{1-\alpha/2}(2n)}{2T}, \frac{\chi^2_{\alpha/2}(2n)}{2T} \right]]

通过模拟实验验证,发现该置信区间在 10000 个样本中有 502 个不包含真值的估计。


均匀分布的区间估计

对于均匀分布 (U(0, \theta)),其充分统计量为样本最大值 (X_{(n)})。根据 LS 定理,(\theta) 的无偏估计量为 (\frac{n+1}{n} X_{(n)})。因此,枢轴量的构造基于统计量 (T = X_{(n)})。

通过枢轴量分析,我们可以将 (\theta) 的区间估计转化为:

[\frac{T}{\theta} \sim Y_{(n)} \sim \text{Beta}(n, 1)]

其中 (Y_1, Y_2, \ldots, Y_n) 独立同分布于 (U(0, 1))。因此,枢轴量的密度函数为:

[g(x) = n x^{n-1} I(0 < x < 1)]

而 (\frac{\theta}{T}) 的密度函数为:

[f(x) = n x^{-(n+1)} I(x > 1)]

为了找到包含 (\theta/T) 的置信区间,我们需要解决以下优化问题:

[\min l, \quad \text{s.t. } \frac{1}{c^n} - \frac{1}{(c + l)^n} = C]

通过分析,我们发现最佳选择为 (c = 1),此时置信区间为:

[[T, T / \sqrt[n]{\alpha}]]


极限分布

极限分布是指统计量的分布随着样本容量 (n) 趋向于无穷时的行为。中心极限定理是分析极限分布的重要工具,它表明:

[\frac{\sqrt{n}(\bar{X} - \mu)}{\sigma} \stackrel{d}{\to} N(0, 1)]

当 (\sigma) 和 (\mu) 已知时,统计量的分布会趋向于标准正态分布。中心极限定理和大数定律共同构成了统计学的基础。


大样本下的区间估计

在小样本情况下,某些参数的区间估计难以构造,但通过极限分布,我们可以给出近似置信区间。

例如,对于二项分布 (B(1, p)),其均值 (\mu = p) 的置信区间可以通过中心极限定理构造为:

[\left[ \bar{X} - \sqrt{\frac{\bar{X}(1 - \bar{X})}{n}} u_{\alpha/2}, \bar{X} + \sqrt{\frac{\bar{X}(1 - \bar{X})}{n}} u_{\alpha/2} \right]]

类似地,对于泊松分布 (P(\lambda)),均值 (\mu = \lambda) 的置信区间为:

[\left[ \bar{X} - \sqrt{\frac{\bar{X}}{n}} u_{\alpha/2}, \bar{X} + \sqrt{\frac{\bar{X}}{n}} u_{\alpha/2} \right]]


总结

区间估计的核心在于利用统计量的渐近分布。通过枢轴量法和中心极限定理,我们可以在许多分布中构造近似置信区间。然而,对于一些复杂分布,如柯西分布,我们需要特定的方法来估计总体中位数。

接下来,我们将探讨假设检验,这是统计学中的另一个重要组成部分。

转载地址:http://gtbyz.baihongyu.com/

你可能感兴趣的文章
NO32 网络层次及OSI7层模型--TCP三次握手四次断开--子网划分
查看>>
NoClassDefFoundError: org/springframework/boot/context/properties/ConfigurationBeanFactoryMetadata
查看>>
Node JS: < 一> 初识Node JS
查看>>
Node-RED中使用JSON数据建立web网站
查看>>
Node-RED中使用json节点解析JSON数据
查看>>
Node-RED中使用node-random节点来实现随机数在折线图中显示
查看>>
Node-RED中使用node-red-browser-utils节点实现选择Windows操作系统中的文件并实现图片预览
查看>>
Node-RED中使用node-red-contrib-image-output节点实现图片预览
查看>>
Node-RED中使用node-red-node-ui-iframe节点实现内嵌iframe访问其他网站的效果
查看>>
Node-RED中使用Notification元件显示警告讯息框(温度过高提示)
查看>>
Node-RED中实现HTML表单提交和获取提交的内容
查看>>
Node-RED中通过node-red-ui-webcam节点实现访问摄像头并截取照片预览
查看>>
Node.js 8 中的 util.promisify的详解
查看>>
Node.js 函数是什么样的?
查看>>
Node.js 历史
查看>>
Node.js 在个推的微服务实践:基于容器的一站式命令行工具链
查看>>
Node.js 实现类似于.php,.jsp的服务器页面技术,自动路由
查看>>
Node.js 异步模式浅析
查看>>
node.js 怎么新建一个站点端口
查看>>
Node.js 文件系统的各种用法和常见场景
查看>>