博客
关于我
数理统计13:非正态总体的区间估计,极限分布
阅读量:433 次
发布时间:2019-03-06

本文共 1858 字,大约阅读时间需要 6 分钟。

指数分布与均匀分布的区间估计

在前一篇文章中,我们讨论了枢轴量法,并通过它对正态分布参数进行了区间估计。然而,正态分布的点估计具有独特的性质,使得其区间估计相对容易。接下来,我们将探讨其他分布的区间估计方法。


指数分布的区间估计

指数分布 (E(\lambda)) 的参数 (\lambda) 的区间估计是一个常见问题。由于 (\bar{X}) 是 (1/\lambda) 的无偏无偏估计量,因此 (\lambda) 的区间估计需要通过 (\bar{X}) 或其与 (\chi^2) 分布的关系来构造。

对于指数分布,样本和 (\Gamma(n, \lambda)) 服从,于是 (2\lambda T) 服从 (\chi^2(2n)) 分布。因此,枢轴量 (2\lambda T) 的观测值可以通过等尾区间来确定:

[2\lambda T \in [\chi^2_{1-\alpha/2}(2n), \chi^2_{\alpha/2}(2n)]]

因此,(\lambda) 的 (1-\alpha) 置信区间为:

[\left[\frac{\chi^2_{1-\alpha/2}(2n)}{2T}, \frac{\chi^2_{\alpha/2}(2n)}{2T} \right]]

通过模拟实验验证,发现该置信区间在 10000 个样本中有 502 个不包含真值的估计。


均匀分布的区间估计

对于均匀分布 (U(0, \theta)),其充分统计量为样本最大值 (X_{(n)})。根据 LS 定理,(\theta) 的无偏估计量为 (\frac{n+1}{n} X_{(n)})。因此,枢轴量的构造基于统计量 (T = X_{(n)})。

通过枢轴量分析,我们可以将 (\theta) 的区间估计转化为:

[\frac{T}{\theta} \sim Y_{(n)} \sim \text{Beta}(n, 1)]

其中 (Y_1, Y_2, \ldots, Y_n) 独立同分布于 (U(0, 1))。因此,枢轴量的密度函数为:

[g(x) = n x^{n-1} I(0 < x < 1)]

而 (\frac{\theta}{T}) 的密度函数为:

[f(x) = n x^{-(n+1)} I(x > 1)]

为了找到包含 (\theta/T) 的置信区间,我们需要解决以下优化问题:

[\min l, \quad \text{s.t. } \frac{1}{c^n} - \frac{1}{(c + l)^n} = C]

通过分析,我们发现最佳选择为 (c = 1),此时置信区间为:

[[T, T / \sqrt[n]{\alpha}]]


极限分布

极限分布是指统计量的分布随着样本容量 (n) 趋向于无穷时的行为。中心极限定理是分析极限分布的重要工具,它表明:

[\frac{\sqrt{n}(\bar{X} - \mu)}{\sigma} \stackrel{d}{\to} N(0, 1)]

当 (\sigma) 和 (\mu) 已知时,统计量的分布会趋向于标准正态分布。中心极限定理和大数定律共同构成了统计学的基础。


大样本下的区间估计

在小样本情况下,某些参数的区间估计难以构造,但通过极限分布,我们可以给出近似置信区间。

例如,对于二项分布 (B(1, p)),其均值 (\mu = p) 的置信区间可以通过中心极限定理构造为:

[\left[ \bar{X} - \sqrt{\frac{\bar{X}(1 - \bar{X})}{n}} u_{\alpha/2}, \bar{X} + \sqrt{\frac{\bar{X}(1 - \bar{X})}{n}} u_{\alpha/2} \right]]

类似地,对于泊松分布 (P(\lambda)),均值 (\mu = \lambda) 的置信区间为:

[\left[ \bar{X} - \sqrt{\frac{\bar{X}}{n}} u_{\alpha/2}, \bar{X} + \sqrt{\frac{\bar{X}}{n}} u_{\alpha/2} \right]]


总结

区间估计的核心在于利用统计量的渐近分布。通过枢轴量法和中心极限定理,我们可以在许多分布中构造近似置信区间。然而,对于一些复杂分布,如柯西分布,我们需要特定的方法来估计总体中位数。

接下来,我们将探讨假设检验,这是统计学中的另一个重要组成部分。

转载地址:http://gtbyz.baihongyu.com/

你可能感兴趣的文章
NetBeans IDE8.0需要JDK1.7及以上版本
查看>>
netcat的端口转发功能的实现
查看>>
netfilter应用场景
查看>>
netlink2.6.32内核实现源码
查看>>
Netpas:不一样的SD-WAN+ 保障网络通讯品质
查看>>
NetScaler的常用配置
查看>>
netsh advfirewall
查看>>
NETSH WINSOCK RESET这条命令的含义和作用?
查看>>
Netty WebSocket客户端
查看>>
netty 主要组件+黏包半包+rpc框架+源码透析
查看>>
Netty 异步任务调度与异步线程池
查看>>
Netty中集成Protobuf实现Java对象数据传递
查看>>
Netty事件注册机制深入解析
查看>>
Netty原理分析及实战(四)-客户端与服务端双向通信
查看>>
Netty客户端断线重连实现及问题思考
查看>>
Netty工作笔记0006---NIO的Buffer说明
查看>>
Netty工作笔记0007---NIO的三大核心组件关系
查看>>
Netty工作笔记0011---Channel应用案例2
查看>>
Netty工作笔记0013---Channel应用案例4Copy图片
查看>>
Netty工作笔记0014---Buffer类型化和只读
查看>>